
J .  Fluid Mech. (1990), vol. 221, pp.  205232 
Printed in Great Britain 

205 

An angular spectrum model for propagation of 
Stokes waves 

By KYUNG D U C K  SUHt, ROBERT A. DALRYMPLE AND 
JAMES T. KIRBY 

Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, 
Newark, DE 19716, USA 

(Received 15 August 1989) 

An angular spectrum model for predicting the transformation of Stokes waves on a 
mildly varying topography is developed, including refraction, diffraction, shoaling 
and nonlinear wave interactions. The equations governing the water-wave motion 
are perturbed using the method of multiple scales and Stokes expansions for the 
velocity potential and free-surface displacement. The first-order solution is expressed 
as an angular spectrum, or directional modes, of the wave field propagating on a 
beach with straight iso-baths whose depth is given by laterally averaged depths. The 
equations for the evolution of the angular spectrum due to the effects of bottom 
variation and cubic resonant interaction are obtained from the higher-order 
problems. Comparison of the present model with existing models is made for some 
simple cases. Numerical examples of the time-independent version of the model are 
presented for laboratory experiments for wave diffraction behind a breakwater gap 
and wave focusing over submerged shoals: an elliptic shoal on a sloping beach and 
a circular shoal on a flat bottom. 

1. Introduction 
Since Booker & Clemmow (1950) clarified the concept of the angular spectrum of 

plane waves, it has been applied in various branches of physics and engineering that 
deal with wave propagation (see Ratcliffe 1956; Gabor 1961 ; Clemmow 1966). In  
water-wave-propagation problems, Stamnes et al. (1983) used an angular spectrum 
model to study wave focusing by a lens in water of constant depth. Recently 
Dalrymple & Kirby (1988) developed an angular spectrum model for propagation of 
linear water waves on a beach with straight and parallel bottom contours. This 
model was extended to the case of irregular bathymetry by Dalrymple et al. (1989). 
These models are solved by a marching method starting from given wave data 
offshore and give accurate results for waves propagating at large angles from the 
assumed propagation direction (positive 2-direction in this paper) if the bottom 
variation in the y-direction is not severe. 

The governing equation in the models of Dalrymple & Kirby (1988) and Dalrymple 
et al. (1989) is the linear mild-slope equation developed by Berkhoff (1972). 
Dalrymple et al. incorporated nonlinearity in the model by correcting the wave 
parameters iteratively using an empirical nonlinear dispersion relationship proposed 
by Kirby & Dalrymple (1986). In  the present study, we develop an angular spectrum 
model for the propagation of Stokes waves over a mildly-varying topography, 
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including nonlinearity in a more rigorous fashion. In  $2, a simple angular spectrum 
model for water of constant depth is derived, illustrating the angular spectrum and 
its physical significance. In  $3,  the equations governing the water-wave motion are 
perturbed using the method of multiple scales and Stokes expansions for the velocity 
potential and free-surface displacement, yielding a set of perturbation equations at 
each order in wave steepness. I n  $4, the first- and second-order problems are solved 
completely and a set of equations governing the slow evolution of the angular 
spectrum is obtained. In $5, we explore some subsets of the equations derived in $ 4  
and they are compared with some existing models. Numerical examples to show the 
ability of the model are presented in $6, and finally a summary of the main results 
of the paper is given in $ 7 .  

2. The angular spectrum and its physical interpretation 
In  order to illustrate the concept of the angular spectrum and its physical 

significance, we consider the Helmholtz equation in @(x, y )  in water of constant 
depth : 

where k is the constant wavenumber and the complex wave potential @(x, y) is 
related to the total velocity potential for the wave motion, $(x, y ,  z ,  t ) ,  by 

$ = @(x, y)cosh k(h+z)e-lWt, (2.2) 

where i = - 1,  w is the angular frequency of the wave, h is the constant water 
depth, and the vertical coordinate x is measured vertically upwards from the still- 
water line. 

Suppose that a wave field represented by CY(0, y) is incident on the line x = 0, 
propagating into the half-plane x > 0. The Fourier transform of @ ( O ,  y) in the y- 
direction is 

m 

where the circumflex denotes a transformed variable and h is the continuous Fourier 
parameter. The inverse Fourier transform is 

(2.4) 

Noting that the unit-amplitude plane wave propagating in the direction of k E 
((k2-h2)i, A )  is exp [i((k2-h2)~x++y)], exp (ihy) may be regarded as a unit-amplitude 
plane wave propagating in that direction-at x = 0. The complex amplitude of that 
plane-wave component is simply (1/2x) @(O, A )  dh as can be seen in (2.4). For this 
reason, 6(0, A )  is called the angular spectrum of the wave field @ ( O ,  y). The angular 
spectrum is merely the Fourier transform of a wave field along a straight line, each 
component of which represents the complex amplitude of the plane wave propagating 
in a certain direction. 

The Fourier transform of (2.1) in, the y-direction provides an equation for the 
evolution of the angular spectrum @(x, A)  : 

&+ (k2-A2) 6 = 0, (2.5) 
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FIGURE 1. Diagram of the Fourier decomposition of the wave field on a row with an angular 
spectrum (with lateral wavenumbers, pA,  p = 0, 2 , .  . .). k, and k, are the wavenumbers in the 
5- and y-directions, respectively. 

1, 

where subscripts denote partial differentiation. An elementary solution to this 
equation for constant k is 

&(x, A )  = &(o, A )  exp [i (k2-~2)+x] .  (2.6) 

This result will be interpreted differently depending on the magnitude of ( k 2 - A 2 ) .  If 
(k2 -A2)  > 0, then the effect of propagation over a distance x is simply a change in 
the relative phases of the various components of the angular spectrum. Since each 
plane-wave component propagates a t  a different angle, each travels a different 
distance to reach a given observation point and relative phase delays are thus 
introduced. If (k2 - A2) < 0, these wave components decay exponentially as they 
propagate in the x-direction. Such components of the angular spectrum are called 
evanescent modes. The limiting case, (k2-A2)  = 0, corresponds to the plane wave 
propagating in the y-direction, contributing no net energy flow in the x-direction. 

Finally, the inverse Fourier transform of (2.6) gives the solution to (2.1) in terms 
of the initial angular spectrum &(O, A )  : 

6(0,h)exp[i(k2-A2)~x]exp[iAy]dA. (2.7) 

This equation implies that it is sufficient to know the free-surface displacement on 
the line x = 0 to determine it a t  any point in the half-plane x > 0. Note, however, 
that this is an approximate solution comprised of plane waves only. Though (2.7) is 
the exact solution to the Helmholtz equation (2.1), it is not the full solution of the 
linearized water-wave problem on constant depth, which would include all of the 
vertical eigenmodes. In  fact, as shown in Stamnes (1986), one must know the velocity 
potential in the plane x = 0 for all values of y and for all z-values between the bottom 
at z = - h  and the undisturbed water surface a t  z = 0. The full solution of the 
linearized problem is given in Q 19.1 of Stamnes (1986) along with a discussion of the 
range of validity of the approximate solution in (2.7) of the present paper. 

In the actual computation using discrete data values on a computational grid, a 
discrete Fourier transform is used under the assumption that the model domain is 
periodic in the y-direction. By discretizing the domain of width 1 by N +  1 equidistant 
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points of spacing Ay = l / N  so that @(x, 0) = @(x,NAy), the velocity potential @(x, y) 
defined on the first N points can be transformed into discrete Fourier modes by 

1 N-1 

& ( x , p ) = -  @(x,jAy)e-ipAJAv ( p = O , + l , + 2  ,..., & ( 3 - - 1 ) , - i f i ,  (2.8) 
N j-0 

which describe the wave components propagating in different directions as indicated 
in figure 1. The inversion formula is 

@ ( X , j ~ y )  = & ~ , p )  eiPAfAY ( j  = 0, 1, 2 , .  .. , ( N -  I ) ) ,  (2.9) 

where 
P 

2% A = -  
NAY ' (2.10) 

which is different from the continuous Fourier parameter h used previously. These 
transforms can be performed efficiently by using a fast Fourier transform. 

3. Governing equations and multiple-scale perturbation expansions 
The exact equations governing the velocity potential $(x, y, z,  t )  and the free 

surface ~ ( x ,  y, t )  of the waves propagating in water of finite depth, assuming 
incompressible fluid and irrotational flow motion, are given by 

V2$ = 0 (-h < z < T ) ,  (3.1) 

9A+$tt+Iv~lt"+B(v~.v,lv~12 = 0 ( z  = T ) ,  (3.2) 

$&+glv~l"gr = 0 (2  = T ) ,  (3.3) 

$ z  = -V,$.V,h ( X  = - h ) ,  (3-4) 

where V and V, are the three-dimensional and horizontal gradient operators, 
respectively, g is the gravitational acceleration, and h(x, y) is the water depth 
measured from the still-water line. 

The method of multiple scales has been proven to be a powerful tool for problems 
of weakly nonlinear waves by Benney & Roskes (1969), Yue & Mei (1980), and Kirby 
& Dalrymple (1983), among others. In  the present multiple-scale analysis we 
introduce the following slow variables : 

x, = €X, x, = € 2 2 ,  ... ; t, = €t, t ,  = € 2 t ,  ... , (3.5) 

where 6 is the Stokes-wave steepness parameter, so that the derivatives with respect 
to x and t are replaced by 

a a  a a a a  a a 
- N -  +€-+€,-+...; - 
ax ax ax, ax, at, at, 

at - z+€-+€Z--+ ...; 
where x and t relate t o  the fast wave-like characteristics while x,, x2,. . . , and t , ,  t,, . . . , 
cover the slower modulation of the wave field. 

No assumption is made yet for scales for y since the lateral variation of the wave 
field will be taken care of later by its angular spectrum representation, which 
therefore makes it possible to model the large-angle components and the small-angle 
components of the wave field equally well (cf. figure 1 ) .  This differs from previously 
derived models in which appropriate scaling for y was also made depending on the 
problem to be considered. In the parabolic models of Yue & Mei (1980) and Kirby & 
Dalrymple (1983), for example, they chose two scales x and x, in the x-direction, 
while in the y-direction only one variable, y1 = ey, was chosen under the assumption 
that no fast wavelike variation occurs in the y-direction, consistent with the 



An angular spectrum model for propagation of Stokes waves 209 

X 

FIQURE 2. Definition of depth components. 

parabolic approximation, but the effect of finite angles of propagation with respect 
to the x-axis allows the amplitude to vary in the y-direction O(E-’) times faster than 
in the x-direction. 

The bottom boundary condition (3.4) is defined for different water depths at  
different locations in the y-direction. For its angular spectrum representation, 
however, we need to express it for a reference depth which is constant in the y- 
direction. This is chosen, in this study, as the laterally averaged depth, k, given by 

so that 

where 

h(x, y) = E(1- v), 

Here 6(x, y) is the deviation of the actual bottom from the laterally averaged depth, 
as indicated in figure 2. Note that 5 is a function of x only and the variability of depth 
in the y-direction is contained in v(z,y), whose magnitude is usually much smaller 
than unity if the topography does not deviate greatly from straight and parallel 
contours. 

In order to determine the point at which the effect of bottom slope and bottom 
irregularity (in the y-direction) enters the bottom boundary condition, we need to 
choose the scales for V, h and v(x, y). Assuming mildly-varying topography, we 
restrict V, h to be O(s2), that is, 

h, x e2hXg, h, x e2hyl, (3.10) 

where an additional scale, y2 - e2y, was defined. Accordingly, we assume 

Ex x €=Ex,, 8, x E=4x2’ 8, x €28,; (3.11) 

The bottom is then effectively locally flat up to the third order in E.  These scales for 
bottom slopes were chosen by Djordjevid & Redekopp (1978) and Kirby & 
Dalrymple (1983). With this choice the effect of bottom slope becomes as important 
as the nonlinearities ; that is, both the bottom-slope terms and the cubic nonlinear 
terms appear first in the equations at  third order. 
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For the magnitude of the lateral bottom irregularities, we assume v z O ( E )  so that 

Y) = Y), (3.12) 

where p(x,  y) z O( 1) is introduced for later convenience. The effect of lateral bottom 
irregularities then appears a t  the second order in E .  This scale necessitates the choice 
of the slow variables x, and t ,  which are omitted in Yue & Mei (1980) and Kirby & 
Dalrymple (1983) based on the argument that for Stokes waves the modulation 
scales in horizontal space and time are O ( E - ~ )  times greater than the wavelength and 
wave period, respectively. Without these slow variables, the $21 problem in $4.2 
becomes unsolvable since it is then identical to the homogeneous first-order problem 
except for the inhomogeneous bottom boundary condition. The bottom forcing term 
in the second-order problem is introduced by the process of modifying the actual 
bottom boundary condition (3.4) to one on the laterally averaged depth. In the 
models of Yue & Mei and Kirby & Dalrymple, this process is not necessary and the 
q521 problem is identical to the first-order problem, so they neglected the solution for 
$21. If we assumed v w O(E*),  this difficulty could be avoided ; the bottom topography, 
however, then could be assumed as straight and parallel contours. 

We proceed by expanding the free-surface conditions (3.2) and (3.3) about x = 0 
and the bottom boundary condition (3.4) about z = -k(z) in Taylor series. 
Substitution of Stokes expansions for $ and ?,I: 

(3.13) 

into these equations, with the scales (3.6), (3.10)-(3.12), then gives a boundary-value 
problem in z for each order of n :  

V2$, = F, ( - IG < z < 0) ,  (3.14) 

d n , +  $ntt = G n  (2 = O ) ,  (3.15) 

(3.16) 

$nz = B, (Z = - E ) ,  (3.17) 

where F,, G,, H,,  B, are the forcing terms determined by lower-order solutions and 
are given in the Appendix. 

4. Evolution of the angular spectrum 
The boundary value problems (3.14)-(3.17) are solved up to the second order in 

order to obtain the third-order forcing terms which describe the cubic nonlinear 
interaction. The first-order solution is expressed in terms of the angular spectrum. 
Since the higher-order problems are linear in $,, the method of superposition allows 
the solution in the form, q5,, = q5nl+q5nz+ ... +$,,, where $,1 is the waves 
proportional to the first harmonics, $nz is the sum and difference waves, and so forth. 
Then since the problem of is inhomogeneous and its homogeneous version (i.e. the 
first-order problem) has as a non-trivial solution, they must satisfy a solvability 
condition, which follows by applying Green’s second identity to dl and and leads 
to the so-called evolution equations governing the slow modulation of the angular 
spectrum. 
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4.1. First-order solution 

For n = 1,  the problem (3.14)-(3.17) is homogeneous, and describes waves 
propagating on a beach with straight and parallel bottom contours whose depth is 
given by E(x). The solutions for $, and 71, can be readily obtained in the form of the 
discrete Fourier transform (cf. equation (2.9)) as 

where C.C. is the complex conjugate, II/, is the phase function: 

II/, = ~ ( k 2 - ( p n ) 2 ) ~ & + p A y - o t ,  (4.2) 

in which h is given by (2.10), and the angular frequency o is related to the laterally 
averaged depth, k(x), and the corresponding wavenumber k(x)  (hereafter we use k = 
k for simplicity) by 

Ap(x l ,  x 2 ,  t,, t2) is the slowly varying complex amplitude of the wave component 
propagating in the direction k = ( (k2-(ph)2)i ,pA),  and 

w2 = gktanhkE. (4.3) 

cosh k(E+ z )  
= coshkk (4.4) 

The index p varying from -A& to (IJ-1) (cf. equation (2.8)) describes the plane 
wave components propagating in different directions as indicated in figure 1.  The 
wave components for which  PA)^ > k2 represent the evanescent modes which decay 
exponentially in the x-direction. Since in general k has the minimum value at the 
offshore boundary, some evanescent modes become progressive modes as they 
propagate into shallower region. In this study, these evanescent modes are neglected 
and only the progressive modes a t  the offshore boundary are carried into the domain, 
assuming the energy of the evanescent modes is negligibly small compared with that 
of the progressive modes. We close this section by mentioning that k, x e2kz, and 
f, = e2fi, since we assumed Ex to be O(e2). 

4.2. Second-order solution 

Since the second-order problem is linear in $2 and q2, it can be advantageously solved 
by assuming 

in which $21 and r/21 are taken to satisfy the problem with the forcing terms 
proportional to the first harmonics (i.e. exp (*i$J), while q522 and yZ2 satisfy the 
problem with the remaining forcing terms proportional to exp [ ki(@QkII/r)]. The 
indices q, r ,  varying from -18 to  (la-- l), correspond to the index p in (4.2). 

$42 = $21 + $422, 712 = 7121 + 7122, (4.5) 

Assuming $421 and r/21 to have the forms 

r$21 = [($21)peiDpeipAy+~.~.], qZl = [(~21)pei4eipA~+c.c.], (4.6) 
P P 

where (4.7) 
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and recalling the formula for inverse discrete Fourier transform (2.9), we observe that 
(q521), exp (iQ,), p = 0, k 1,. . . , represent the discrete Fourier components of q521 
without its conjugate part. Expressing the forcing terms in the same form as (4.6), 
for example, 

F21 = C [(F,,), einpeiphu + c.c.], (4.8) 
P 

the discrete Fourier transform of the q521 problem, omitting the conjugate part and 
dividing through by exp ( iQp) ,  is given by 

(g-+521)p = (41)* (-5 < 2 < O h  (4.9) 

(4.10) (2 = 01, 

--i4q52Ap+dv21)p = (H21)p (2 = O), (4.11) 

a 
S~(q52l),-w2(q52l), = (%)p 

Before proceeding to solve this problem, we need the evolution equation for A ,  
at the second order. By letting 

q51 = 22 [(q511)peinpeipA~+c.c.], 
P 

(4.13) 

the boundary-value problem for (q5& is the homogeneous form of the equations 
(4.9)-(4.12). Applying Green's second identity to (q511)p and (q521)p, we obtain the 
solvability condition 

Performing the integration over depth and noting that 

where C = w / k ,  C, = h / a k ,  leads to the evolution equation for A ,  

where 

and 

8, = (k2- (ph)2) tds ,  

$ = FPb(s, y )F- l (A ,  eiem)] 

s 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

represents the forcing due to the interaction between surface wave modes and lateral 
bottom variation. F-' and Fp on the right-hand side denote the inverse Fourier 
transform and the pth component of the discrete Fourier transform, respectively. 
The superscript 1 in P, is used because other wave-bottom interaction terms of the 
similar form will appear later. Each mode of the angular spectrum, A,, thus can be 
modified at  the second order through the interaction of surface waves with the lateral 
bottom variation. On straight and parallel contours, the wave-bottom interaction 
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term Zk vanishes since p(x, y)  = 0 everywhere. The effect of bottom slope has not 
entered yet at  the second order. Without the wave-bottom interaction term, (4.16) 
describes the wave envelope A, propagating without change of form on a locally flat 
bottom a t  the speed ((k2- (ph)2)z/k)C, in the x-direction which is the x-component of 
the group velocity C,. 

The solution for ($,,), is obtained by using the method of variation of parameters 
as 

sinh k(h+ z )  
A,,, + -1w e PI;. (4.19) 

g (k2-(ph),); - sinhk(E+z) 
cosh Ich '' ' sinhkh ($21)P =-% k ( h  + 4 

The corresponding free-surface displacement (q2& is 

(4.20) 

The solution for the sum and difference waves is given, as in Sharma & Dean (1979), 

1 

9 
D:r = - [A& + i(w f w )  C$], 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

where i and j are the unit vectors in the x- and y-directions, respectively. It can be 
shown for the case of a single wavetrain that this solution reduces to that of Stokes 
second-order theory, i.e. 

A,e2i+g+c.c. 
cosh 2k(E+ z )  

sinh4 kh 
&(q = r )  = -&iw (4.31) 
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4.3. Evolution equations for the angular spectrum A ,  
For n = 3, again the problem is linear in $3 80 that  we can separate the solution as 
54, = r$31+q532+$33 as in the second-order problem. Neglecting the forcing terms, 
F,,, G,, and B,,, representing quadratic resonances which can occur only in shallow 
water, and expressing #8, as 

#31 = I: ~ ( 5 4 , ~ ) ~  eiRs eishu -I- C.C.], 
S 

(4.32) 

the discrete Fourier transform of the $31 problem, without its conjugate part, is given 
by 

( g - k ' )  ($3,)seiRa = (F31)sei"s ( -h<  x < O ) ,  (4.33) 

(4.34) 
a 

9 x (5431 )s eiR, - w2 ($31)SeiRs = (a31)seiRs+(G33)s (' = O), 

- (r$31)8 eins = (B3,)s eins (2  = 4). (4.35) 
a 
ax 

The forcing terms, (F31)5, (G,,),, and (B31)s, are obtained from the third-order forcing 
terms directly proportional to  the first harmonics, and the cubic resonant interaction 
term (G33)s due to the interactions between the primary waves and the sum and 
difference waves or among the primary waves themselves is 

(4.36) 

where the interaction coefficient Q is given by 

Q = -g[(k2-(rh)2)~((k2-(qA)2)~-(k2-(ph)2)~) (rh) (@+PA)  

ig2 
2w 

-Rk&, tanh (kzp  h) + $k$] C& -- (k2 -R2)(D& -I);,. -0;;) 

i g3 
8 w3 

- - - [ ( k 2 - ( p h ) 2 ) ~ ( k Z - ( q h ) 2 ) ~  ( k 2 - ( r h ) 2 ) : ( 2 ( k 2 - ( p A ) 2 ) ~ - ( k 2 -  ( r 4z)9 

+ ( ~ A ) ( ~ A ) ( T A ) ( ~ ( ~ A ) -  (rh)) + k z ~ z +  2(k2 - ( p h ) ~ ) ;  ( k 2 -  (rA)2)i(qh) (ph  - rh)  

+ 2(k2 - (p>A)2)i(k2- (qA)2)i(qA)(rh) -4Rz ( (k2 -  (ph),);(k2- (ph )  ( rh) )  

--uZ2((k2- (pA)2)i(k2- (qh)'))"+ (ph) (qA))], (4.37) 

and the Kronecker delta, Ss=p+4-r, describing the resonant condition has the value 1 
if s = p + q -  r is satisfied and is 0 otherwise. For the self-interaction of a single 
wavetrain ( p  = q = r = s), this reduces to  

cosh 4kZ+ 8 - 2 tanh2 k6 
8 sinh4 kh 

Q = $gwk2 > (4.38) 

which is the coefficient of the cubic nonlinear term in the nonlinear Schrodinger 
equations of Yue & Mei (1980) and Kirby & Dalrymple (1983). 
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Again applying Green's second identity to (q531)seis1s and (q511)seiQ*, we obtain the 
solvability condition 

which leads to the evolution equation for A ,  a t  the third order: 

(k2 - (SA),)t  [(k2-(sh),)+CC 3 
x 2 ~ A , + ~ , ~ , x  A%* + k CgA.Sxp+ 2w 1 1  

(&2, + oh tanh k6) epi@SIf 

k(k2 - (542);  

4- sinh 2k6 

h 
'sinh2kh" 

'C +(2Cg-C)sinh2kk-2C)e-'@sG 

iwk2h2 
2 sinh2 2kh 

- - (1 + 4 sinh2 kh) e-iQsl: 

1 
- -e-iQ~(1~+I~)+-(G33),e-iQ8 = 0, (4.40) 

2w cosh2 kh g 

where 

(4.41) 

1: = F'b(x ,  y)F-'((k2-(mA)2)~A,zleiQ~)], (4.42) 

and the new wave-bottom interaction terms are 

1; = F,[S[GxzF-1((k2- (mA)2)tA,eiem)], (4.43) 

1: = Fs[G,aF-'((mn)A,ei~m)], (4.44) 
I; = F'b(x, y)F1(Am eiem)], (4.45) 

21 

1: = F 8 b 2 F 1 ( A m  eiQm)]. (4.46) 

Adding (4.16) with 5 instead of p and E times the equation (4.40), considering A, as 
functions of x, and t ,  only, that is, 

yield 

a a  a a  a a 
at, at, at, ax, ax, ax, 
-+€-+-, -+e- -+- ,  

- (1 + 4 sinh2 kh) e-i8s1: 
iwk2E2 

2 sinh2 2kh 
- 2C) e-'@SI: - E 

(4.47) 

(4.48) 
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ax, x eT2SX, Su2 x B - ~ S ~ ,  finally we obtain the evolution equation for A ,  in the physical 
coordinates (2, y, 1)  : 

Using the scales, a p t ,  % €-'@/at), a/ax, x e-'(a/ax), a/ax2 % c2(a/ax),  ,u x s-lv, 

lC + (2Cg-C) sinh2kh-2C) e-ie8F8[vF-1((k2- (mA)2)'A,,eiem)] 
h 

+sinh2kk(' ' 

- iWk2K2 - (1 + 4 sinh2 kh) e-ies F8[v2F1(A, eiem)] 

- -FS[6,P-l((k2-(mh)')tA, eiem)+SVF-l((mh)A,eiem)] 

2 sinh2 2kh 

ge-ies 

2w cosh' kh 

(4.49) 
1 

9 
+ - (Q,,), e-'"a = 0. 

The ordering parameter 6 was removed from the last term since it has served its 
purpose. This equation governs the slow evolution of the wave component A ,  due to 
refraction, diffraction, shoaling, and nonlinear wave interactions. The third term 
represents the shoaling/refraction of each wave component on laterally averaged 
depth. The complicated periodic convolution terms represent wave diffraction due to 
the interaction between surface wave and the lateral bottom variation, which 
disappear on straight and parallel contours, and the last term involving (G33)s 
contains the cubic nonlinearities. 

The time-dependent equation (4.49) is of parabolic type. This equation represents 
a very general approach to the solution of wave propagation in a domain with 
properly posed initial condition (at t = 0) and boundary conditions (at x = 0 and 
x = b where b is the length of the domain in the x-direction). In many practical 
applications, however, the assumption of steadiness of the wave field may be 
appropriately utilized. The time-independent equation for A ,  cannot be obtained 
simply by dropping the first term in (4.49) since the time dependency of A, was 
extensively involved in deriving other terms. One may obtain it by setting the 
derivatives with respect to the slow times t, and t, to be zero from the outset and 
repeating the derivation. The resulting expression for the time-independent evolution 
equations for A, is 

(k2- (8h)Z)~ [(k2-- (8h)2)iCCE], A,-i wkK -eWiea F,[vF-'(A, e i e m ) ]  
2w sinh 2kh k C,Aax + 
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g e-ies - -F [6 ,F-l((k2-  (mA)2)iAm eiem) +S,F-l((mA)A, eiem)] 
2wcosh2kh ' 
1 

+g(G3,),e-'"8 = 0, (4.50) 

where 1 C g(k2-(sA)2) E , = -  A+ 
2 k  [ 2wk2 (4.51) 

The angular spectrum A,  is now phase-shifted by the substitution 

A, = A~exp[i((k~-(sh)z)~x- (k2-(sh)2)idz)], (4.52) 

where k, is a fixed reference wavenumber at x = 0 (the offshore boundary). A: is then 
the angular spectrum of the velocity potential $1 given by 

r 
q51 = X (  S -$jA:exp[i((k:-(sh)')+ z+shy-wt)]+c.c. . 1 (4.53) 

By this procedure, we can eliminate the integral of the wavenumber component in 
the x-direction, 

( k 2 -  (sA)2)idx, 

which introduces errors when it is computed numerically. Substituting (4.52) into 
(4.50) and multiplying through by k / ( ( k 2  - ( ~ h ) ~ ) i C , )  gives 

(G33)ie-i":(s = 0, f l ,  f 2  ,... ), k + S,F-'( (mh) A; eieh)] - 
gC@- ( S A ) Z ) t  

where 0: = (k,2-(Sh)2)t5, 
(4.54) 

(4.55) 

a; = 0:--wt. (4.57) 

Equation (4.54) is coupled nonlinear first-order ordinary differential equations for 
A:, s = 0, f 1,. . . , which can be solved by standard numerical methods provided 
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initial conditions for A: at x = 0 (offshore boundary) are specified. In this study, we 
use the fourth-order Runge-Kutta method. The details of finite-differencing and 
stability analysis of the numerical method are in Suh (1989). 

5. Comparison with previously derived models for some simple cases 

previously derived models. 
In this section, we explore the correspondences of our evolution equations to 

5.1. Time-dependent models 
5.1.1. Evolution of wave envelopes propagating normal to shore on a beach with 
straight and parallel contours 

Djordjevid & Redekopp (1978) derived an evolution equation for wave envelopes 
propagating normal to shore (positive x-direction in this study) on a beach with 
straight iso-baths, Simplification of the evolution equation (4.48) to this case can be 
made by setting s = 0 ( A  = A,,), dropping all the wave-bottom interaction terms, 
and using the scales i3/i3t1 M e(i3/i3t2) and a/ax:, x +3/8x2), to yield 

where 
wh cosh' kh 1 a2w 

2 ak2 
= C2 

2w k sinh 2kh 
D,(s = 0) = _9-+Cghtanhkh- 

was used and 
cosh 4kh + 8 - 2 tanh2 kh 

16 sinh4 kh 
K = wk2 (5.3) 

On a constant depth, the third term in (5.1) disappears and the equation reduces to 
the two-dimensional version of Davey & Stewartson (1974) equation without the 
term representing the effect of first-order long waves, which were omitted in the 
present study . 

By introducing the following variables : 

5 = E2X = x 2 ,  (5 .5)  
into (5.1) as in Djordjevid & Redekopp (1978), we obtain, after neglecting the terms 
of O ( E )  or smaller, the evolution equation for A ( [ ,  T) as 

0 a Z w  
BioC, A,  + i[kCC,],A +----A, -2wKIAI2A = 0. 

C: ak2 

In the notation of Djordjevid & Redekopp, this equation can be written as 

k 
k 

2iwCgA,- igaA (1 - kha)A - (1 - kha) (1 - 8) 

-@f(~-12+13a2-2a4 8a a2 IAI2A = 0, (5.7) 

where CT = tanhkh. Except for some algebraic differences in the last term, this 
equation is identical to Djordjevid & Redekopp equation without the term involving 
long waves. The fourth term in their equation is dimensionally incorrect. 
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5.1.2. Resonant interactions between two trains of deep-water gravity waves 
Following the analysis of Phillips (1960) for the growth of a tertiary wave by the 

resonant interaction among three primary waves, Longuet-Higgins (1962) studied 
the resonant interaction between two trains of deep-water gravity waves which is a 
simpler case of the three-wave interaction when two of the three primary waves are 
identical. Studies for the nonlinear evolution of wave envelopes due to cubic 
resonances were also made in parallel. Based on the work of Benney & Newel1 (1967), 
Roskes (19764 presented a nonlinear Schrodinger equation system of the following 
form to describe the slowly varying amplitudes of two deep-water waves : 

PA2 
A2T + cgz. vhA2-iEz 7, ij ~- axi axj i.A2EP211A112 +P221A2121 = 07 (5.9) 

where T = et, X = EX, Pij is the interaction coefficients, and the dispersion tensors yl,, 
1 = 1,2,  are defined by 

i , J  

(5.10) 

For an angular spectrum which varies only in the x-direction, (5.8) and (5.9) can 
be simplified by dropping the terms involving the derivative of the amplitude with 
respect to X, which corresponds to the y-direction in our notation. If we consider two 
components of an angular spectrum, each propagating in directions k, = 
(k2- (mh)2)ii+ (mh)j and k, = ( k 2 -  (nh)?);i+ (nh)j with the same frequency w ,  (5.8) 
and (5.9) can be written in the present notation as 

which are equivalent to (4.48) in deep water. For this case, Roskes (1976 b )  gave the 
interaction coefficients Pij as 

(5.13) P11 = P 2 2  = -w2, 
P12 = PZl = - wklk, + k,l sin2 $9 - 4ok21k, + k,l sin2 $6 sin2 #/( Ik, + k,( - 4k) 

+ 2wk2 sin2 $9- o k 2  (sin2 $9 cos2 g6 + l),  (5.14) 

where 6 is the angle between k, and k,, and is the angle between -k, and 
(k, + k,) as indicated in figure 3. Comparing the cubic nonlinear terms in (4.48) and 
(5.11), it can be shown (see Suh 1989) that 

(5.15) 

(5.16) 
i9P11, Q(p  = q = r = m) = - 

&(p = m, q = r = n)+Q(p = n, q = m, r = n) = -igP12. 

5.2. Time-independent angular spectrum models 
The simplest case to be considered of the time-independent model (4.50) may be 
waves propagating on a constant depth. Neglecting nonlinearity, it  becomes 

A,Z = 0, 
8 

(5.17) 
FLM 221 
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FIQURE 3. Definition of B end 9. 

whose solution is 
A,@) = constant = A,(O), (5.18) 

implying the angular spectrum does not change as it propagates on a constant depth. 
Another simple case is when waves propagate on a beach with straight and parallel 

depth contours. For this case, taking the Fourier transform of the mild-slope 
equation of Berkhoff (1972) in the y-direction, splitting the velocity potential into 
forward-propagating and backscattered potentials, and neglecting the assumed 
small backscattered potential, Dalrymple & Kirby (1988) constructed an angular 
spectrum model given by 

2( k2 - ( s A ) ~ ) ~  CC, @:% - 2i( k2 - ( s A ) ~ )  CC, @: + [ ( k2 - ( S A ) ~ ) ~  CC,& @: = 0, (5.19) 

where the superscript +- denotes the forward-propagating component of the wave 
potential @ in the mild-slope equation. After substituting for 0: by 

@: = A ,  exp [ i (k2 - ( s A ) ' ) ~  dz], (5.20) 

equation (5.19) becomes 

(5.21) 

which can be obtained by linearizing (4.50) on straight and parallel contoursr Thus, 
(4.50) on straight and parallel contours is the nonlinear extension of Dalrymple & 
Kirby's wide-angle wave propagation model. 

Dalrymple & Kirby's model was extended to the case of irregular bathymetry by 
Dalrymple et al. (1989) in the following form : 

2(&- (s~)2$8:~-2i(R- ( 5 ~ ) ~ )  &+ [ ( P -  ( s ~ ) 2 ) : 1 ~  5:+ilEa~,[v2~-1(6;)1 = 0, 
(5.22) 

where 6 = (CC,)i@ and again the superscript + denotes the forward-propagating 
wave. Instead of using a laterally averaged depth they used an averaged wavenumber 

(5.23) 

where (5.24) 

so v in (5.22) defined by 
k2 

v2(2,y) = 1--$ (5.25) 
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Wave 

FIGURE 4. Layout of the wave basin in the experiments of Pos & Kilner ( 1987). 

is different from v in the present study (cf. equation (3.9)) even though both of them 
represent lateral depth variation. The last term in (5.22) representing wave 
diffraction due to the interaction between surface wave and lateral bottom variation 
is replaced by more complicated wave-bottom interaction terms in (4.50), which, in 
one of the numerical examples in the next section, will be proved to make the present 
model outperform the Dalrymple et al. model. 

6. Numerical examples 
I n  order to test the capability of the model for various physical phenomena such 

as combined refraction4iffraction and nonlinearity, we apply the time-independent 
model (4.54) to several different water-wave problems for which experimental data 
are available These include wave diffraction through a breakwater gap and wave 
focusing behind submerged shoals. 

6.1. Wave diffraction behind a breakwater gap 
The problem of breakwater-gap wave diffraction is important for studying calmness 
in a breakwater harbour. The experiments of Pos & Kilner (1987) show that linear 
theory overpredicts wave heights in the open region behind the gap, but 
underpredicts them in the shadow zones. We apply our nonlinear model to this 
problem to examine the effect of nonlinearity. 

The wave basin used in the Pos & Kilner experiment consists of two impermeable 
shore-attached breakwaters lying on the y-axis seaward ends of which are extended 
offshore by jetties separated by a distance B, as shown in figure 4. The wave 
propagating in the positive x-direction between the jetties is diffracted into the basin. 
I n  order to investigate the pure diffraction without distortion of the diffracted wave 

8-2 
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field by reflection from the circumferential beaches, they used a photogrammetric 
wave height measurement technique. Some uncertainties associated with this 
technique are discussed later. 

Six tests of various gap widths and wave characteristics were carried out in the 
experiments of Pos & Kilner. Here we test our model for only one case for which 
detailed measurement data along a cross-section are provided in their paper. The 
constant water depth is 0.125 m. The period and amplitude of the incident wave are 
0.67 s and 2.775 cm, respectively. The wavelength, L,  computed by linear theory is 
0.604m and the gap width, B, is 0.99m, so that B/L = 1.64. 

Since a laterally periodic boundary condition is assumed in the present model, in 
order to assure negligible effects of the side gaps on the gap being modelled, the width 
of the model domain should be large compared with the gap width. The model width 
is taken as sixteen wavelengths so that the ratio of the gap width to the breakwater 
length is 0.1025. The initial condition is given by the KirchhoE condition on @; along 
the breakwater, i.e. 

where @+ is the velocity potential in Dalrymple & Kirby equation (5.19) and A,, is the 
initial amplitude assumed to be constant a t  the gap. @:%(O) is obtained by an FFT 
of (6.1), and then @ z ( O )  is computed by 

(6.2) @;=(o) = i(k2 - ( S A ) * ) ~  @:(o), 

which is the reduced form of (5.19) on a constant depth. Finally Ai(0)  = A,(O) = 
@:(O) by equations (4.52) and (5.20). 

Angular spectrum models using the Fourier transform technique have, in principle, 
infinite order of accuracy, if the solution is smooth (see Osher 1984). However, the 
situation changes drastically when discontinuities are present as in equation (6.1). 
Gibbs phenomenon occurs near the discontinuities and high-frequency oscillations 
pollute the solution globally since we use a finite Fourier transform in practice. 
Several smoothing techniques have been used to eliminate this deterioration. The 
simplest way is to  merely set to zero all of the wavenumber spectrum beyond a 
prescribed magnitude. A slightly more elegant technique is to utilize a low-pass filter 
which consists of an exponential cut-off of high wavenumbers (e.g. Majda, 
McDonough & Osher 1978). However, by using this kind of smoothing technique, we 
loose.the most advantageous feature of our model in which the waves propagating 
at  large angles from the predominant wave direction are carried by the high 
wavenumber components. 

Another way to resolve the high-frequency oscillation is to weight-average the 
solution in the physical domain rather than in the Fourier domain, see, for example, 
Gottlieb, Lustman & Orszag (1981). In this numerical example, we apply a &point 
averaging in the y-direction to the final solution A ( x ,  y). A 5-point averaging in 
general has the following form : 

X j  = aAi_z+pAI_,+yA,+pAj+1+cLAj+2, (6.3) 

in which the subscripts denote the location in the y-direction (e.g. A j  = A(x,jAy)), 
2(a+p)  + y = 1 and usually y > p > a > 0. Applying this averaging to the complex 
solution A(x ,  y) smooths not only its magnitude but also its phase. However, we want, 
to smooth the magnitude of the solution in a row with its phase unchanged. For this 
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FIQURE 5. Comparison of the model results against the experimental data of Pos & Kilner (1987) 
in terms of diffraction coefficient (K,,). 0, Experiment : . . . . . . , Penney & Price solution; ---, 
linear model; -, nonlinear model. 

purpose, we develop the following smoothing procedure. First, the averaged 
magnitude of the solution a t  the j t h  point is calculated by 

The actual smoothed solution is then calculated by 

Note that this smoothing is applied to the final solution so that the smoothing effect 
does not enter the model during the computation of the angular spectrum. In this 
computation, a = 0.1, p = 0.2, and y = 0.4 were used. 

The computational results of the present model (both linear and nonlinear) are 
presented in figure 5 along with the experimental data in terms of diffraction 
coefficient across the cross-section a t  x/L = 3. The solution of Penney & Price (1952) 
is also presented for comparison with the linear model result. Since the problem is 
symmetric about the x-axis, only the right half is presented. As expected, the 
nonlinear model predicts smaller wave height in the open region and larger wave 
height in the shadow zone compared with the linear model results, giving better 
agreement with the experimental data than the linear model. 

The nonlinear model underpredicts the measurements throughout the cross- 
section, and the linear model also provides severe underprediction except a t  the 
centreline where i t  slightly overpredicts the measurement. I n  the experiments of Pos 
& Kilner, the photographs of the wave field were taken when the first wavefront 
arrived a t  the toe of the backwall beach to  avoid the contamination of the diffractive 
wave field by waves reflected from the beaches. By this time, however, the area near 
the gap would most likely have been contaminated by wave reflection from the 
sidewall beaches since the distances from the gap to the sidewall beaches are only 
about half of that from the gap to the backwall beach. Another question in their 
experiments is whether the wave field in the basin had reached a steady state at the 
instant when the photograph was taken, as it is known that there are modulations 
in wave amplitude at the leading edge of transient wavetrains. Upwave reflection in 
the entrance channel, owing to the abrupt channel transition, may also contribute to 
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FIGERE 6. Bathymetry of the computational domain for the experiment of Berkhoff et aZ. 
(1982). Dashed lines indicate the transects of wave measurement. 

the discrepancy between the measurement and model prediction. Assuming 
perfectly-reflecting sidewalls, Dalrymple (1989) estimated the reflection a t  6 %. This 
upwave reflection and its re-reflection from the wavemaker will produce partial 
standing waves in the entrance channel. It is not clear if this was taken into 
consideration in their experiment. 

6.2. Wave focusing behind an elliptic shoal on a sloping beach 
For the purpose of testing the model for the prediction of wave deformation on an 
irregular bathymetry, we have chosen the experiment reported in Berkhoff, Booij & 
Radder (1982). The experimental bathymetry consists of an elliptic shoal situating 
on a sloping beach with a slope 1 : 50. The slope rises from a region of constant depth 
h = 0.45 m, and the entire slope is rotated a t  an angle of 20" from the y-axis as shown 
in figure 6, where the solid lines indicate bottom contours and the dashed lines are 
the transects along which data from the experiment of Berkhoff et al. are available. 
The details of the geometry of the shoal in the present coordinate system are referred 
to Dalrymple et al. (1989). The wave propagating in the positive x-direction at x = 
0 has 2.32 em amplitude and 1 s period. 

The graphical comparison between the model results and the measurements along 
the transects 1-8 is given in figure 7,  showing that the nonlinearity is important a t  
the transects 4 and 5 where the wave has passed through the caustic cusp. Here we 
present a more quantitative comparison using a statistical parameter proposed by 
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FIGURE 7. Comparison of the model results against the experimental data of Berkhoff et al. (1982) 
in terms of normalized amplitude with respect to incident amplitude. 0,  Experiment ; ---, linear 
model ; -, nonlinear model. 
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Linear Nonlinear 

Section 
no. 

1 
2 
3 
4 
5 
6 
7 
8 

Total 

D a 1 r y m p 1 e Dalrymple 
N Present et al. Parabolic Present et al. Parabolic 

28 0.897 0.852 0.918 0.897 0.913 0.928 
28 0.953 0.847 0.934 0.952 0.945 0.973 
28 0.995 0.946 0.975 0.988 0.986 0.983 
27 0.976 0.898 0.935 0.993 0.991 0.993 
28 0.944 0.706 0.854 0.988 0.982 0.990 
23 0.883 0.472 0.645 0.969 0.970 0.988 
23 0.972 0.699 0.891 0.981 0.954 0.985 
23 0.930 0.844 0.875 0.901 0.796 0.951 

208 0.973 0.867 0.933 0.987 0.982 0.990 

TABLE 1. Indices of agreement for comparing the numerical model results against the 
measurements for the experiment of Berkhoff et al. (1982) 

Willmott (1981). As a measure of the degree to which a model's predictions are error- 
free, he introduced a dimensionless quantity, d,  as an index of agreement 

where 0 is the mean of the observed variates O,, and pi, i = 1 to  N ,  are the predicted 
variates. The values for d vary between 0 and 1.0, where 1.0 indicates perfect 
agreement between observation and prediction, and 0 connotes complete dis- 
agreement. 

The indices of agreement computed for each transect in figure 6 and for total 
measurement points are given in table 1, in which the results of the Dalrymple et al. 
model (5.22) and the parabolic model of Kirby & Dalrymple (1983) are also presented 
for comparison. For all the transects, the present linear model gives much better 
agreement with the measurements than the Dalrymple et al. linear model, probably 
because the wave-bottom interaction is represented in a more elaborate manner in 
the present model. The present linear model also outperforms the linear parabolic 
model. On transects 2, 3 and 8, the present linear model gives even better agreement 
than the nonlinear model. Though the nonlinear parabolic model performs slightly 
better than the other nonlinear models, the indices of agreement do not show big 
differences among the nonlinear models and are close to  1.0, indicating that all the 
nonlinear models work quite well. 

Another measure to compare the performance of numerical models may be the 
computing time, though it is not a critical factor owing to the development of high- 
speed computers. The amounts of CPU time and the grid sizes of each model are 
given in table 2. The grid sizes were taken differently from one model to another 
considering the accuracy and stability of the solution. The computer used is a 
PRIME 9955 Minicomputer with 16 megabytes RAM and a virtual memory 
operating system. There is no difference in computing time between the linear and 
nonlinear versions of the parabolic model. The difference is small between the linear 
and nonlinear versions of the Dalrymple et al. model. The computing time of the 
present nonlinear model, however, increases greatly compared with that of the linear 
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FIGURE 8. Geometry of the computational domain for the experiment of 

Ito & Tanimoto (1972). 

Present Dalrymple et al. Parabolic 

Linear 25 s 1 rnin 29 s 1 rnin 22 s 
Nonlinear 11 min 53 s 1 min 53 s 1 min 22 s 

Ax 0.5 m 0.1 m 0.25 m 
AY 0.3125 m 0.3125 m 0.25 m 

TABLE 2. Comparison of CPU time in modelling the experiment of Berkhoff et al. (1982) 

model owing to the computation of the cubic nonlinear terms involving triple 
summations. The present linear model gives the best result (cf. table 1)  with the least 
computing time but its nonlinear version takes the greatest computing time. 

6.3. Wave focusing behind a circular shoal resting on a $at bottom 

The most advantageous feature of the angular spectrum model is that it permits 
solution by a marching method like the parabolic model but is valid for waves 
propagating a t  large angles from the assumed propagation direction. For the purpose 
of testing the model for waves propagating over an irregular bathymetry a t  large 
angles of incidence, we have chosen the experiment reported by Ito & Tanimoto 
(1972). Their experimental bathymetry consists of a circular shoal resting on a flat 
bottom. A monochromatic wavetrain propagates over the shoal, and wave focusing 
occurs behind the shoal. Owing to the axisymmetry of the circular shoal, the wave 
focusing pattern behind the shoal should be independent of the angle of incidence, if 
the model predicts it 'correctly '. 

The geometry of Ito & Tanimoto experiment is shown in figure 8. The water depth 
on the flat bottom h, = 0.15 m, and the water depth in the shoal region is described 
by 

h = h2+0.15625 [ ( ~ - 1 . 2 ) ~ + ( ~ - 1 . 2 ) ~ ] ,  (6.7) 

where h, = 0.05 m is the depth at the shoal crest. A monochromatic wavetrain with 
1.04 ern wave height and 0.511 s period enters the domain a t  Bo = 0'. For the three 
different sections indicated in figure 8, data from the experiment of Ito & Tanimoto 
are available. Comparison with the model results along these sections are shown in 
figure 9(a-c)  in terms of normalized wave amplitude with respect to the incident 
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FIGURE 9. Comparison of the model results against the experimental data by Ito & Tanimoto 
(1972) in terms of normalized wave amplitude with respect to the incident amplitude. A, 
Experiment ; -, present nonlinear model ; ---, nonlinear parabolic model. 

amplitude. I n  each figure, nonlinear results of the present model are given by solid 
lines, while triangles indicate measured data points. The results of the large-angle 
parabolic model of Kirby (1986) are also given by dashed lines. This model uses the 
minimax approximation to obtain better accuracy for waves propagating a t  large 
angles. Both models predict the measurement reasonably well. 

I n  order to test the model for a large angle of incidence, the flat bottom in figure 
8 is extended to y x 4.8 m and the wave focusing is modelled for two different 
incident angles : 8, = 45" and 8, = 60". To satisfy the lateral periodicity of the wave 
field, the model width is taken to be an integer multiple of the lateral wavelength of 
the incident wave field but close to 4.8 m. Otherwise the discontinuity of the initial 
wave field a t  the side boundaries propagates into the domain, contaminating the 
solution. A qualitative comparison with the results of normal incidence can be made 
by comparing the contour maps of wave amplitude or instantaneous surface 
elevation for each incident angle. For a more quantitative comparison, the variation 
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of the normalized amplitude along the section 3 (in figure 8) for different angles of 
incidence is plotted in figure 10. The values of normal incidence are indicated by a 
solid line, and the solid and open circles indicate the values at 6, = 45" and 60", 
respectively, which were obtained by digitization from the contour maps of 
normalized amplitude. A similar figure for the parabolic model of Kirby (1986) is also 
presented. 

The results of the present model for 6, = 45" closely follow those of normal 
incidence except near the right depression, whereas for 8, = 60" the disagreement is 
more pronounced, especially on the right-hand side of the caustic cusp. The overall 
shapes of the results of the parabolic model for 8, = 45" and 60" are very similar to 
that for normal incidence, but they are shifted to the left, indicating that the focused 
wave fields for 8, = 45" and 60" rotate towards the positive x-direction. The shift 
becomes severe with increasing angle of incidence, and it is more prominent on the 
right-hand side of the caustic cusp. 

Dalrymple et al. (1989) have presented a simple theoretical analysis regarding the 
accuracy of their angular spectrum model in terms of lateral depth variation and 
wave propagation angle, concluding that in order for their model to be accurate for 
a large angle of incidence, the lateral depth variation should be small. A similar 
analysis can be applied to the wave-bottom interaction terms involving Y in the 
present model (4.54). The height of the shoal in the above example is Q of the water 
depth on the flat bottom (unusually high considering the normal situation in real 
cases). In order to examine the effects of the magnitude of the lateral bottom 
variation, we have tested the model for a shoal having half the height of the shoal 
shown in figure 8 (i.e. h, = 0.1 m in equation (6.7)). Figure 11 presents results similar 
to those presented in figure 10 for smaller shoal height. The results for 8, = 45" 

(b) Parabolic model 

7 0 I I 1 I I 

FIQURE 10. Comparison of the model results of 8, = 45" and 8, = 60" against those of normal 
incidence in terms of normalized wave amplitude with respect to the incident amplitude at section 
3 indicated in figure 8: (a )  present modei, ( b )  parabolic model; -, normal incidence; 0 ,  45"; 
0, 60". 
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almost exactly match those of normal incidence in both models and those for Bo = 
60" also give good agreement with the normal incidence. 

There are some other problems associated with the large-angle propagation in this 
example. First, the constant-depth region before the shoal (x < 0.4 m in figure 8) 
should be affected by the presence of the shoal if a large angle of incidence is 
modelled, but this is not detected by the model since it does not include 
backscattering waves. Secondly, the assumption of lateral periodicity makes the 
effect of the imaginar-y upwave shoal appear in the domain to  be modelled when a 
wave is incident a t  a large angle. The latter problem can be resolved by taking a 
wider domain. 

7. Conclusions 
The present study has developed an angular spectrum model for predicting the 

transformation of Stokes waves due to refraction, diffraction, shoaling and nonlinear 
wave interactions in water of varying depth but free of ambient currents. The 
bottom slope is assumed to be O(e2) and the deviation of the actual depth from the 
laterally-averaged depth is assumed to be O(E)  of the laterally-averaged depth. In  
order for the model to be valid for the case in which waves propagate a t  large angles 
from the x-direction, the second assumption should not be violated. 

Through the example for wave focusing behind an elliptic shoal on a sloping beach, 
the present linear model has proved to  predict the wave transformation on an 
irregular bathymetry much better than the linear model of Dalrymple et al. (1989), 
probably owing to the more elaborate expressions for the wave-bottom interaction 
in the present model. The nonlinear models, however, did not show big differences 
between each other and both predicted the measurement reasonably well. The 
advantages of the Dalrymple et al. nonlinear model are that it can be applied over 
the entire range of water depths and that the effects of ambient current can be 
included easily by modifying the dispersion relationship. The advantage of the 

FIGURE 11. Same as figure 10 for the results of the test with smaller shoal height. 
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present model is that it can be extended to a random directional wave field including 
the nonlinear interaction among the waves with different frequencies as in Suh 
(1989). 

This work is partly a result of research sponsored by NOAA Office of Sea Grant, 
Department of Commerce, under Grand no. NA86AADSG040. J. T. K. received 
support from the Office of Naval Research, contracts N00014-86-K-0790 and 
N00014-89-5-1717. The US Government is authorized to produce and distribute 
reprints for governmental purposes, notwithstanding any copyright notation that 
may appear herein. 

Appendix. Summary of the forcing terms 

follows : 
The forcing terms in the boundary-value problems (3.14)-(3.17) are summarized as 

Fl = 0, (A 1) 

F2 = - AXXI - $lXIX? 

F3 = - ~ l X I X ,  -A,,, - AX2, - !$z,,, -4z+ 
G, = 0, 
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